Course Descriptions
Elective Courses Taught at Meharry
NSC1 70001 Neurobiology of Disease (1-5 credits)
PHAR 723 Toxicology (3 credits)
PHY720 Readings in Physiology (3 credits)
Elective Courses taught at Vanderbilt
NURO 325 Neuroscience Discussions (2 credits)
NURO 345 (PHAR 345) Cellular and Molecular Neuroscience (4 credits)
NURO 340 Systems Neuroscience (4 credits)
COURSE DESCRIPTIONS FOR THE PROGRAM IN NEUROSCIENCE
NSC1 700. NEUROBIOLOGY OF DISEASE. The course has five modules (1 credit hour each).
The modules are: Parkinson’s Disease and Movement Disorders, Alzheimer’s Disease and
Dementias, Chronic Pain, Addictions, and Depression and Mood Disorders. The importance
of this course, and the rationale for its development, is to foster preparedness for
interdependent collaborative research that spans from bench to bedside and also allows
laboratory investigators to exploit clinical insights to inform basic science inquiries.
The goal is to train scholars for participation in interdependent research across
the molecular and cellular to integrative and clinical continuum. The course fosters
this interdependence by both the content of the courses and the participation of graduate
and medical students as well as postgraduate (M.D. and Ph.D.) fellows. The selection
of the disease themes of this course reflects areas of research interest and strength
at both Meharry and Vanderbilt and also—in their didactic content—allows students
to become familiar with the breadth of experimental strategies and areas of scholarship
(including genetics and imaging, for example) that converge to facilitate discovery
to translation to clinical diagnosis and intervention. Prerequisite: Graduate Neuroscience.
1-5 credit hours. Fall & Spring.
NSCI 709. ADVANCED NEUROPHYSIOLOGY. A functional approach to nervous system mechanisms.
Topics include sensory and motor mechanisms, sensory motor integration, and higher
functions. The format includes lectures, selected literature discussions, and essay
examinations. 3 credit hours. Prerequisite: Human Physiology. (Substitute for Systems
Neuroscience)
NSCI 712. SEMINAR IN NEUROSCIENCE. Weekly discussion of current topics in neuroscience
research and of research within the Department of Neuroscience and Pharmacology. 1
credit hour.
NSCI 714. RESEARCH IN NEUROSCIENCE. Participation and credit in this course are arranged
by the COI of students working on their Ph.D. thesis research. Required of all students
who are candidates for the doctoral degree. 1-12 credit hours.
NSCI720. READINGS IN NEUROSCIENCE. Student completes a comprehensive reading list
of topics specifically associated with his/her area of research. There are no formal
meetings or exam. This course may be taken only once for credit. 3 credit hours.
NSCI 721. DISSERTATION RESEARCH. This is a practical course in assembling, analyzing,
and presenting large quantities of experimental data. Students are required to register
for this course in the last semester of residence. Course is completed with the approval
of the written dissertation by the COI. Ph.D. thesis research. Required of all students
who are candidates for the doctoral degree. 1-3 credit hours.
NSCI 724. NEURONAL PHYSIOLOGY. Advanced study of cellular processes related to nervous
system functions; includes aspects of neurophysiology, neurochemistry, and neuroanatomy.
Format is primarily lectures and selected literature readings. Prerequisite: core
curriculum. 3 credit hours (Substitute for NURO 325. Neuroscience Foundations–2 credit
hours)
NSCI 735. GRADUATE NEUROSCIENCE. The goal of this course is to help students achieve
an integrated and correlated understanding of nervous system structure, function,
dysfunction, and therapeutics. The course covers the following major topics: 1) excitable
cells and synapses; 2) anatomy of the nervous system, meninges, and neuron-vasculature;
3) sensory systems; 4) motor system; and 5) higher functions. Graduate student exams
in this course are essay type, and test critical thinking skills. 5 credit hours.
PHARM 722. NEUROPHARMACOLOGY. This course presents an overview of neuropharmacology,
including fundamentals of receptor theory, neurotoxicology, neurophysiology, and drug
abuse. Mechanisms and problems concerned with neurotransmission are discussed. Emphasis
is given to the neurochemical basis of CNS disorders and drug intervention. Lecturers,
current literature, discussions are included. 3 credit hours.
PHARM 723. TOXICOLOGY. Principles involved in toxicity of drug and chemical agents
are presented. Topics include xenobiotic biotransformation, toxicokinetics, chemical
carcinogenesis, neurotoxicology, metal toxicity, toxic response of skin and respiratory
system, and occupational toxicology. Toxicological mechanisms of action, rationale
for therapeutic measures against effects of toxic chemical agents, and the basis for
toxicological pathology. Current issues in toxicology (toxicogenomics) are also covered.
Course format includes lectures and student involvement in critical review of current
literature. 3 credit hours.
Courses at Vanderbilt that may be taken as electives in the Neuroscience emphasis
program:
NURO 325. NEUROSCIENCE DISCUSSIONS. This two-semester course provides discussions
on a broad range of neuroscience topics, ranging from reviews of historical concepts
and individuals in neuroscience to science journalism. Other topics include scientific
ethics, science policy, good grantsmanship, and communication skills. FALL, SPRING.
1 credit hour each semester.
NURO 340. SYSTEMS NEUROSCIENCE. Required for Neuroscience majors in the Cognitive
& Systems track. Allows students to develop a working knowledge of neural networks
and brain systems and the techniques used to study these functions. Includes an introductory
overview of neuroanatomy, physiology, and behavior and then moves on to the sensory
and motor systems, motivation, and learning and memory. FALL 4 credit hours.
(NURO 345.) PHAR 345. CELLULAR AND MOLECULAR NEUROSCIENCE. An overview of major neural
networks, including examples from motor and sensory systems, as well as higher cognitive
and affective functions. Studies of neural development move from an examination of
neurogenesis, cell fate, and phenotype development to an analysis of invertebrate
models and how they have advanced our understanding of mechanisms involved in axonal
guidance, synapse formation, and apoptosis. Additional lectures covering synaptic
and systems plasticity and models of neural networks and learning and memory are provided.
Emphasis is placed on the integration of anatomical, biochemical, and physiological
information. SPRING 4 credit hours.
(NURO 346.) PHAR 346. MOLECULAR NEUROBIOLOGY. Molecular components and interactions
that regulate neuronal development, signaling, and disease. Classic molecular analysis
of neurobiological processes is coupled with detailed studies of contemporary literature
to provide students a sound foundation for understanding the molecular bases underlying
the development and function of the nervous system. Topics covered include: development
of neuronal identity, axonal transport, growth factors and cell death, axon guidance
and synapse formation, electrical and chemical neurotransmission, regulation of neuronal
excitability, and genetic analysis of signaling and neural disorders. SPRING 3 credit
hours.
Follow Us